

EERA Center of Excellence on Energy Transition Modelling

Pieter Vingerhoets Laurens de Vries

22-09-2022

What can the modelling research community do to facilitate an accelerated decrease in fossil fuel dependency in the context of Repower EU?

Additional input is welcome to <u>Pieter.vingerhoets@vito.be</u> and <u>L.J.deVries@tudelft.nl</u>

Center of Excellence – Energy Transition Modelling participating institutes

Founding members in 10 member states

LNEG (Pt), NTNU (No), ED (UK), DTU (DK), Tecnalia (Esp), Imperial College (UK)

KHAS (Tur), Sintef (No), RuG (NI), ARU (UK), Ife (No),

DLR (De), Unipd (It), Ciemat (Esp), TNO (NI), Ineg (Pt),

CBS (Dk)

Торіс	Description of model	Name of model	Geographical scope	Institute	
Gas supply	The investments needed for diversifying the gas supply	NTNU model	EU	NTNU (Ruud)	
	Complementing with North sea hydrogen	E3ME	North Sea	ARU (Aled Jones)	
	Complementing with North sea hydrogen	BALMOREL	North Sea	DTU	
	Power & Gas infrastructure model	PyPsa model	DE, (+EU)	DLR	
	Location of hydrogen infrastructure	VTT and Udurham models	UK, Finland	University of Durham (Tom Roskilly), VTT	
Circular economy	Circular economy measures		Belgium, NI, EU	VITO, RUG	
All sectors	TIMES scenarios for all sectors		Belgium, Netherlands, Spain	VITO, RUG, Ciemat	
	OpenEntrance toolbox	OpenEntrance	EU	Sintef, others	
	100% renewable, online toolbox	EnergyPlan	EU	UCD, Aalborg University	
	How to consider transportation in energy system models, fleet development, flexible charging	DLR model, including aviation and shipping	EU	DLR	
Residential sector	Local hydrogen generation in residential context, blending natural gas, hydrogen	Open Entrance,	Turkey, Denmark	DTU, Kadir Has	
	Residential renovation and heat scenarios	DTU model, VITO model	Denmark, Belgium	DTU, Denmark	
Renewables	Potential of biogas/biomass	GIS based models	Flanders, Germany		
Industry sector	Alternative pathways for industrial processes	GIS based models + TIMES	EU, Benelux + NRW	VITO, TNO	
Market models	Electricity market models	Competes, Imperial college model	Diverse	TNO, Imperial College, VITO	
Other models	Buildings, energy security, snenarios, decision support, agent based modeling, circular economy			Stavanger, DTU, U Bochum, CSEI, Croatia, Lithuania, UCD, UniPD, Lneg, CBS, Tecnalia etc.	

We lack a European scenario to put national results into context We lack the detail of the national scenarios in European models

- **Problem statement**: Up to now, few EU model sources and results to connect to.
- **Data** are at **national level** (Building data, industrial process data...) AND **expertise** at national level

Model	Results per member state	Open source	Gas supply detail	Comment
PRIMES	X	X	Υ	No net zero 2050 per MS No power mix per MS
JRC-EU-TIMES	Y	Υ	X	No EERA team in a ready-to-go state
OpenEntrance: GeneSySmod	Y	Y	Υ	Scenarios ready in coming weeks
EnergyPlan	Υ	Y	X	Flexible, more lightweight simulation model
ENTSO-E/G scenarios	Y	X	+/-	Scenarios not optimized Conservative results 2040
Other energy system models (non- exhaustive)				E3ME, Balmorel, SpineOpt, PyPsa, Calliope, Dispaset, Nemesis, Empire, Hypatia, IEA world/ETP

European Energy Research Alliance

Open source models are needed

To unlock the expertise of national research institutes in European scenarios!

European vs national scenario modelling

What we have

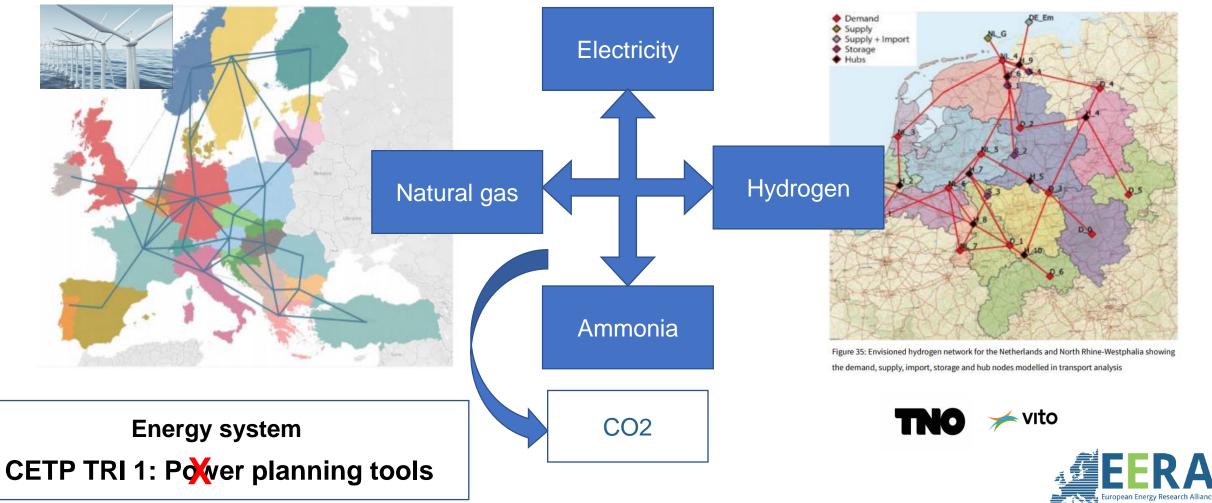
What we need

Example: how many hours is renewable energy abundantly available?

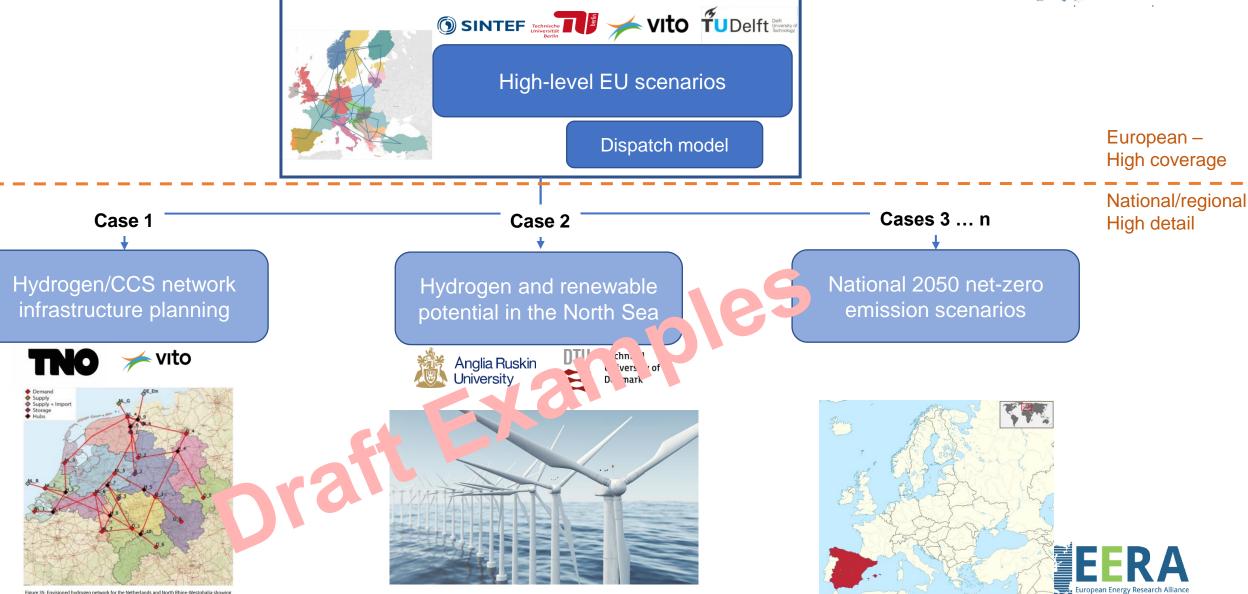
► Amount of hours per year with electricity generation cost <40EUR/MWh for electrolysis.

#hours of the year with cheap electricity<40€/MWh for electrolysis	2030	2033	2035	2040	2045-2050
TYNDP 2020 National Trends	1800			4300	
TYNDP 2018/2020, Distributed Generation			1500	4300	
TYNDP 2018 in Denmark (Energynet), GCA			1900	5700	
PBL KEV2021		4334*			
Agora <u>Energiewende</u>	1900*			1757*	1920*
Elia Adequacy and Flexibility**	400-1000				

TYNDP results are EnergyVille model based on TYNDP data


*, ** it is unclear how Agora and PBL results are calculated

The need for planning of ALL energy vectors



Example: how to determine the need and dimensioning of **ENERGY NETWORKS**?

Open source energy system models: Connecting the dots

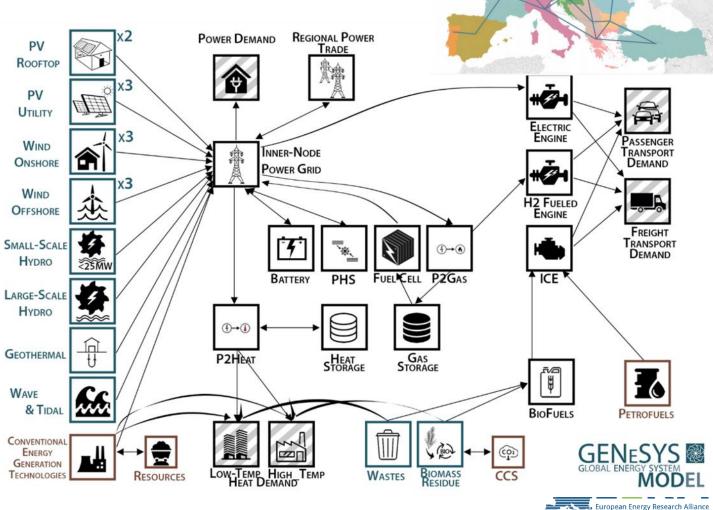
the demand, supply, import, storage and hub nodes modelled in transport analysis

Energy infrastructure planning: conclusions

- We need European energy system scenarios which can exchange and learn from national studies
- We need future climate ambitions to be built on open source modelling with research communities
- We need to model the energy system as a whole, cross-border, cross energy vectors, cross-sector

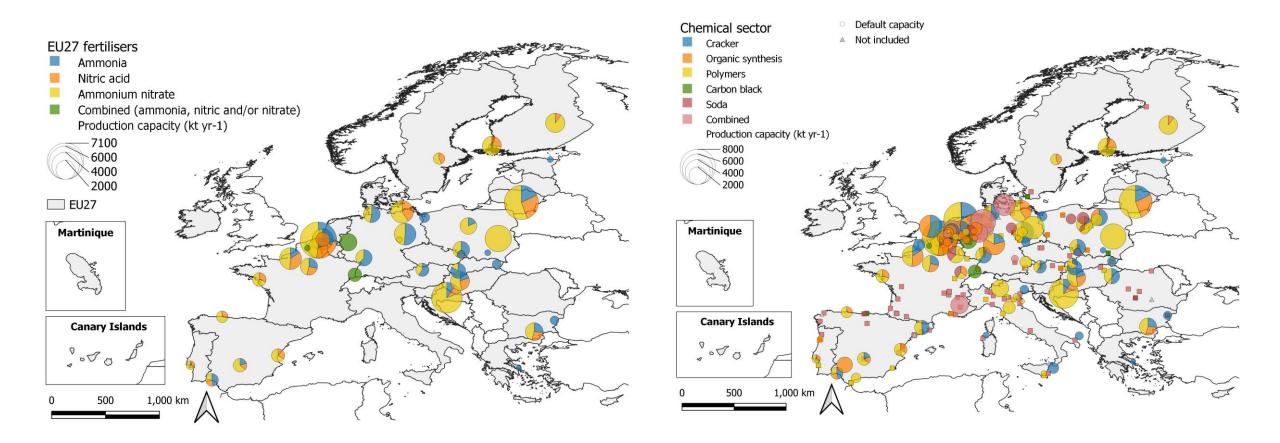
Thank you!

Contact: <u>Pieter.vingerhoets@vito.be</u> ; <u>L.J.deVries@tudelft.nl</u>



GeneSysmod

TU Berlin


- Based on OSeMOSYS family
- Linear program, minimizing total system cost
 - Exogenous demand; calculates the cheapest way to meet it
 - Constrains: max capacities (phys.,pol.), unrealistic development
 - Geographically flexible
 - Representative time steps or every xx hour
- ▶ 30 regions, 2015 to 2050 (5 year steps)
- ▶ Open source, GAMS, solver
- v3.0 developed for openENTRANCE

Abstracted overview of the model structure

Industrial clusters: Greening the hydrogen demand

Greening the hydrogen demand in industrial clusters

Source: VITO

Industrial clusters: Greening the hydrogen demand

- Connecting of the dots to green the hydrogen supply
- Source: The Hy3 project (TNO)

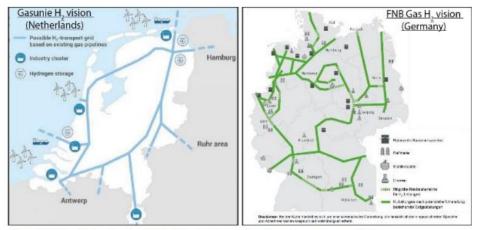


Figure 34: Envisioned hydrogen networks in the Netherlands (source: Gasunie) and Germany (source: FNB Gas)

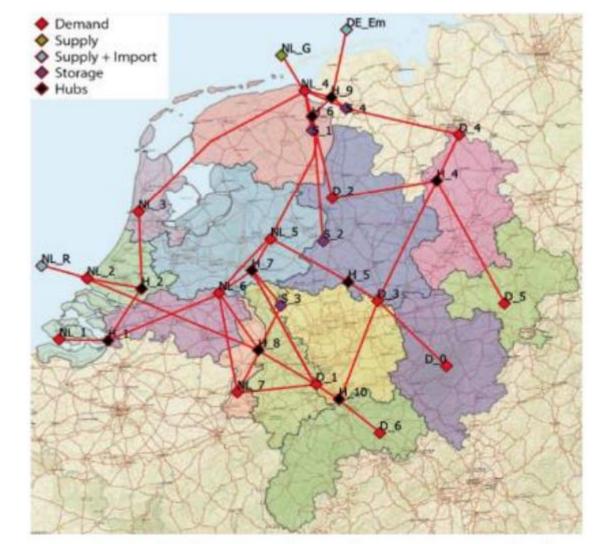
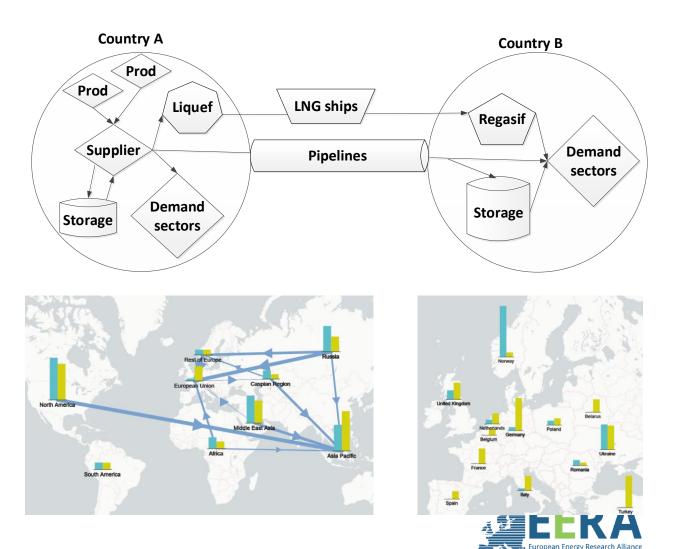
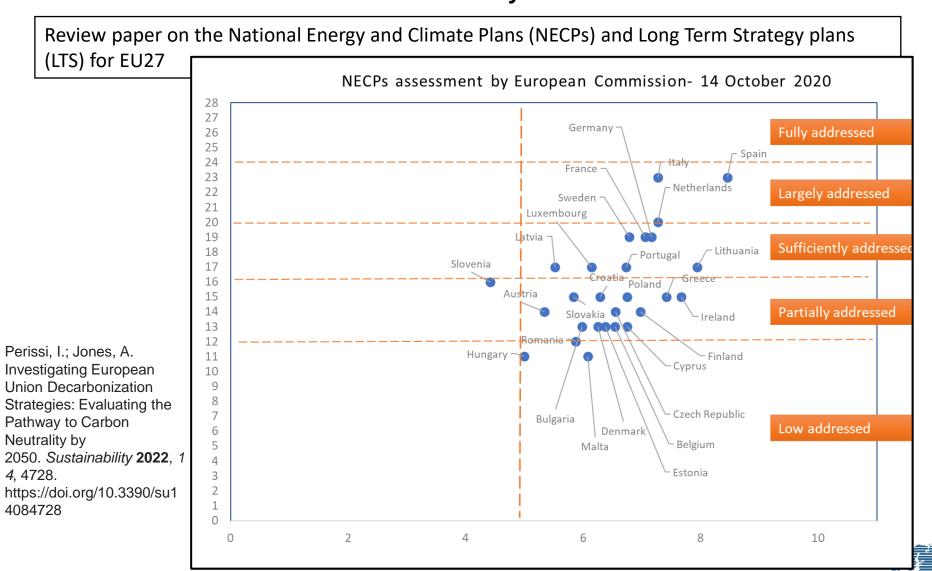


Figure 35: Envisioned hydrogen network for the Netherlands and North Rhine-Westphalia showing the demand, supply, import, storage and hub nodes modelled in transport analysis


Global Gas Model

- GGM multi-period partial equilibrium model for analyzing the world natural gas market.
 - Country level; large countries split (USA, CAN, RUS, CHN, IND)
 - Infrastructure investment and trade considering market power.
 - Production, consumption, prices, pipelines, liquefaction, regasification
 - In Projections production, consumption, prices, market power, policies
 - capacities, investment and operational costs, depreciation, loss rates,
 - sector shares, demand elasticities.
- Out pipeline, liquefaction, regasification, storage expansions and utilization,
 - production, consumption, trade, prices; profits, costs, consumer surplus, social welfare impact



A carefully calibrated benchmark with global scope and country detail for counterfactual policy analysis.

D

a.r.u.

Anglia Ruskir

University

E