nleitung RESILIENT Project Hydrogen Strategies Import Strategies Carbon Management Strategies Conclusion

Building Resilient Energy Infrastructure: Hydrogen, Import, and Carbon Management Strategies

https://resilient-project.github.io/

Dr. Fabian Neumann

f.neumann@tu-berlin.de

Technische Universität Berlin, Germany
CETPartnership Insight Harvesting Workshop – October 16, 2024

Supported by:

on the basis of a decision by the German Bundestag

Selection of Planned Developments

Computational Methods

- decomposition techniques
- large-scale stochastic optimisation
- test robustness of system

Carbon Management and Biomass Usage

- CO₂ network and sequestration
- circular carbon economy
- biomass usage options

Industry Transformation

- fuel and process switching
- industry relocation & investment cycles
- new technologies (oxyfuel cement, etc.)

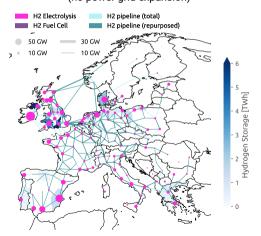

Global Green Fuel and Material Markets

- imports of green energy and materials
- effects on European infrastructure
- risks (geopolitical, technological, etc.)

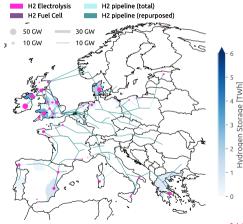
Einleitung RESILIENT Project Hydrogen Strategies Import Strategies Carbon Management Strategies Conclusion

RESILIENT Partners

Funded via CETPartnership 2022 Call.



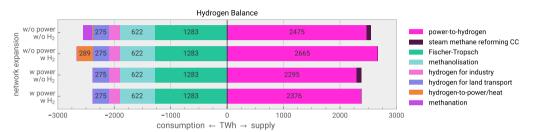
Does Europe need a hydrogen network?


Self-sufficient Europe

(no power grid expansion)

All liquid fuels imported

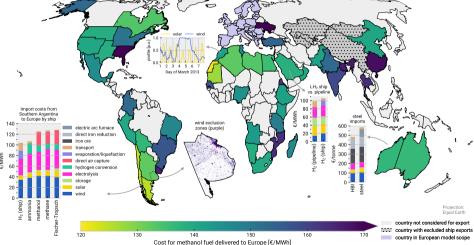
(extreme thought experiment)



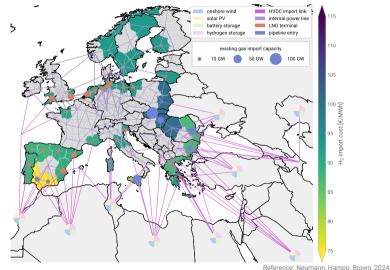
Einleitung RESILIENT Project Hydrogen Strategies Import Strategies Carbon Management Strategies Conclusion

Why? Most hydrogen is used for derivative fuels and chemicals!

Few direct uses of hydrogen; mostly used used to synthesise other fuels and chemicals:


- ammonia for fertilizers
- direct reduced iron for steelmaking
- shipping and aviation fuels

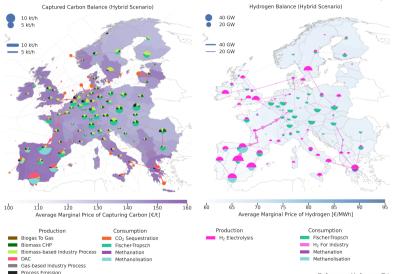
- precursor to high-value chemicals
- backup heat and power supply
- some heavy duty land transport


Letting optimisation decide about green energy imports...

... also leads to substantial imports of steel & hydrogen derivatives.

Finleitung RESILIENT Project Hydrogen Strategies Import Strategies Carbon Management Strategies Conclusion

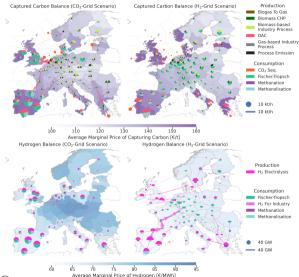
Cost savings depend on used **import vectors**.



 \rightarrow In particular, import of carbonaceous H₂-derivatives and steel/HBI reduces costs.

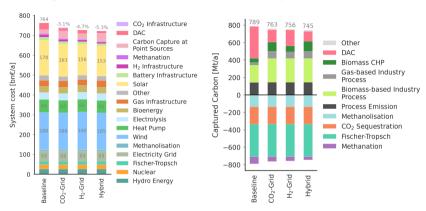
Finleitung RESILIENT Project Hydrogen Strategies Import Strategies Carbon Management Strategies

Transporting CO_2 to H_2 or H_2 to CO_2 for fuel synthesis?


→ Preference for H₂ transport to industrial point sources in Central Europe.

 \rightarrow CO₂ transport for sequestration at sea or for PtX in Spain.

Complementarity of **CO**₂ **pipelines** and **H**₂ **pipelines**



- Alternative models with predominant transport of CO₂ also conceivable for a cost surcharge of 2-3%.
- Direct Air Capture (DAC)
 primarily in Southern Europe,
 provided that biogenic or fossil
 point sources in Europe are
 exhausted

Carbon management: capture, use, transport and sequestration

- CCS for process emissions (for instance, in cement industry)
- CCU for e-synfuels and e-chemicals (in particular, shipping, aviation, plastics)
- CDR for unabatable and negative emissions (to offset imperfect capture rates)

nleitung RESILIENT Project Hydrogen Strategies Import Strategies Carbon Management Strategies Conclusion

Conclusion

- H₂ and CO₂ pipelines: Paths comparable in terms of system costs, but with electricity grid expansion, the advantage of H₂ transport over CO₂ transport decreases.
- **Energy imports:** Benefits most evident for imports of 1000-3000 TWh/year, especially for steel / HBI and liquid carbonaceous energy carriers, but with diminishing returns.
- Infrastructure policy needs **coordination** between the various national and European hydrogen, import, and carbon management strategies.
- Large uncertainties, but also considerable maneuvering space to consider non-cost factors: geopolitics, reuse of infrastructure, <u>resilience</u> of supply chains, diversification, and reduced land use.

