Solar heat and seasonal storage

8 may 2024

Theo Venema

WarmteStad

- Local heat distribution company since 2014
 - City of Groningen : 240k inhabitants, 120k houses
 - Provide renewable and affordable (collective) heat
 - Heatgrid
 - Collective hot cold storage system
 - Municipality and Watercompany
 - 80 employees serving 8.000 households

- Timeline

- 2018 : start construction heat grid
- 2024: 6.000 houses
- 2030: 20.000 houses
- 2035: 30.000 houses
- 2050: 50.000 houses

Our customers

- Housing associations, homeowners, companies, schools, government etc.
- Construction period 65% before 1980
 - design heating temperature 90°C
- Our proposition
 - Collective renewable heat at <u>65°C</u>
 - Comparable costs as natural gas heating

Our heat sources

Sources

- Waste heat datacenters (50%)
- Solar Thermal (20%)
- Natural gas (30%)
 - 2035:0%

Technology

- Heatpumps
- Combined heat and power
- Gasfired boilers
- <u>Seasonal storage</u>

NOVCI MarmteStad

Solarthermal project Dorkwerd

Solarthermal project

1-1- I

24.000 Panels

hectares

-

25 GWh/Y 2600 Homes 5700 tons co2/Y

ovar

Warmteketen

The challenge: matching supply vs demand

Demand vs production of wasteheat

Demand vs production of wasteheat + solarheat

Summer surplus

Summer surplus -> seasonal storage

Seasonal storage: ATES

- Limited temperatures (wasteheat)
- Proven technolog
- Standard materials
- Limited investments
- No surface area needed
- Allows for both MT as LT storage
- Huge capacity

(c) Tank Thermal Energy Storage (TTES)

(e) Cavern Thermal Energy Storage (CTES)

(d) Pit Thermal Energy Storage (PTES)

(f) Fractured Thermal Energy Storage (FTES)

Cross section of the ATES

Bonus challenge: Heat demand is developing

10 years

Super Extra Bonus Challenge Waste heat volume and temperature is developing

10 years

10 years

lllarmteStad

Findings Seasonal heat storage

- Enables combining competitive renewable heatsources
 - Storing waste heat in summer for use in wintertime
- Mitigates 'take or pay' risk of solarheat in developing heatgrid
- Substantially improvement of share of renewable heat in the heatgrid
- Enabling a diversity of heatsources, making the total heatsystem more robust and less vulnerable for changes in demand or production

Seasonal storage: the key to unlock Solarheat

Thank you for your atttention