

Collaborative Harvesting: the CETPartnership Knowledge Community and Impact Network

24th of October 14:00-17:00 CEST Moderation: Tanja Suni, Katharina Reffel

Moderation

Katharina Reffel CETPartnership Knowledge Community Management

Tanja Suni CETPartnership Impact Network Management

Agenda

Time	Content
14:00	Welcome
14:05	Collaborative Harvesting: Going beyond pure research
14:10	Knowledge Management as key accelerator for the Clean Energy Transition
14:20	Get involved in the Knowledge Community – Demo group session
15:25	Coffee break
15:35	Maximising Exploitation and Impact
15:50	Get involved in the Impact Network – Panel, Survey, and Demo exercise
16:50	Wrap-up and next steps
17:00	Closing

Katharina Reffel Knowledge Community Management

10/26/2023

Knowledge

- generate tangible, trustworthy knowledge from projects' outputs
- create a community of collaboration with CETPartnership projects
- prepare joint aggregated outputs for further use

Monitoring

- measure performance of projects and the entire partnership
- collect data and check consistency
- analyse data against targets
- interpret results and draw conclusions

Three-layer Research Model

Impact

- develop interaction tools for impact generation
- build capacity on tools and validation methods
- engage external stakeholders

 organize CETPartnership level impact events with projects and need owners

EUROPEAN PARTNERSHIP Collaborative Harvesting: Knowledge Community & Impact New

EUROPEAN PARTNERSHIP

Knowledge Management as key accelerator for the Clean Energy Transition

Katharina Reffel Knowledge Community Management

Objectives of the Knowledge Community

- Leverage the knowledge produced in the framework of the funded **projects** and put it together to answer the SRIA identified (cross-cutting) challenges and ultimately boost the clean energy transition:
 - Regulatory frameworks and market design
 - O Resource efficiency and circularity
 - Fairness and justice principles
 - Digitalisation

Objectives of the Knowledge Community

- **Leverage the knowledge** produced in the framework of the funded **projects** and put it together to answer the SRIA identified (cross-cutting) challenges and ultimately boost the clean energy transition:
 - Regulatory frameworks and market design
 - Resource efficiency and circularity
 - Fairness and justice principles
 - Digitalisation

Updated Strategic Energy Technology Plan for Europe's clean, secure and competitive energy future

"The Commission will take action in the following areas: Include **new priorities on** cross-cutting issues, including sustainability by design, skills development, research and innovation, tailored to societal needs, digitalisation, and market accessibility."

Objectives of the Knowledge Community

- **Leverage the knowledge** produced in the framework of the funded **projects** and put it together to answer the SRIA identified (cross-cutting) challenges and ultimately boost the clean energy transition:
 - Regulatory frameworks and market design
 - Resource efficiency and circularity
 - Fairness and justice principles
 - Digitalisation
- Create a **community of change-makers** who feel part of a CETPartnership "Family" and regularly contribute to the jointly generated knowledge

Knowledge Community: motivation

for the projects

- interaction among CETPartnership projects and other projects
- knowledge co-creation in cross-cutting thematic Working Group
- connections to need owners and other
 stakeholders → impact network
- Include ideas and partners for future calls

for the **initiative**

- evidence-based and strategic knowledge
- input for further RDI activities ("cocreation on program level")
- working on critical topics not (yet)
 covered by funded projects
- a community of trust and respect in the "family of projects"

10/26/2023

Co-funded by

the European Union

Partnership Level

Thematic Level

Project Level

Information Base	
(DISCCO)	

- Experts Repository
- Projects Repository
- Links to Knowledge Platforms

Partnership Level	Cross Cutting Working Group	
	Focus GroupsCreation of Status Document	
Thematic Level	Webinars	
	Taskforces	
	Topical Working Groups	
	Derivation of Recommendations	
Project Level	Peer-2-peer Feedback Meetings	Projects with similar topics invited to peer feedback rounds on evaluated RDI
	Joint Paper Creation	activities
Information Base (DISCCO)	 Experts Repository Projects Repository Links to Knowledge Platforms 	

Partnership Level	 Cross Cutting Working Group Focus Groups Creation of Status Document 	
Thematic Level	Webinars	Contribution to webinar series "60 Minutes on
	Taskforces	From Project Theory to Project Practice"
	Topical Working GroupsDerivation of Recommendations	
Project Level	 Peer-2-peer Meetings 	
	Joint Paper Creation	
Information Base (DISCCO)	 Experts Repository Projects Repository Links to Knowledge Platforms 	

EUROPEAN PARTNERSHIP Collaborative Harvesting: Knowledge Community & Impact Network

Partnership Level	Cross Cutting Working Group	Working Group meetings identifying RDI needs an	
	Focus Groups	contributions on one cross-cutting topic	
	Creation of Status Document		
Thematic Level	Webinars		
	Taskforces		
	Topical Working Groups		
	Derivation of Recommendations		
Project Level	Peer-2-peer Meetings		
	Joint Paper Creation		
Information Base	 Experts Repository 		
	 Projects Repository 		
(DISCCO)	Links to Knowledge Platforms		

Get involved in the Knowledge Community – Demo group sessions

Room 1: Working Group session on Sustainable Supply Chains in the energy sector

Partnership Level

EUROPEAN PAR

Collaborative Harvesting: Knowledge Community & Impact Network

10/26/2023

Co-funded by the European Union

Room 2: Webinar: "60 Minutes on Interoperability . From Project Theory to Project Practice"

Thematic Level

Room 3: Peer-to-peer feedback session on **Regulatory and Market Development**

Project 2: MESH4U

DoRES

100

Working Group session

 \sim

What do you understand by Sustainable Supply Chains in the energy sector?

Webinar

 \odot

Webinar: "60 Minutes on Interoperability: From Project Theory to Project Practice"

Watch the webinar on YouTube via this link.

Peer-to-peer feedback session

DEPLOYMENT OF SMART RENEWABLE ENERGY COMMUNITIES

#Renewable Energy#Energy comunities #Digitalization of Energy Systems Anatolijs Borodinecs, Riga Technical University

32

the European Union

Project Activities & Results in 2023

	Activities/Results	3D Modelling
Techno- logy	 Framework and tools for effectively designing and assessing large-scale PV systems for decarbonizing built environment. A toolbox for designing, simulating, and optimizing PV/BES in the energy community. Two case studies in Latvia & Czechia to validate and demonstrate project solutions in local networks. 	Solar Potential
Market	 Smart operation of electrical energy systems considering flexibility and energy trading. Testing and evaluation of different business models 	Electrical & Economics
Adoption	 Energy coaching of residents Simple framework containing principles and requirements of the energy communities and will create the base for strategic decisions at the urban scale. 	Business model
EUROPEAN PA	ARTNERSHIP CETPartnership Annual Conference – Peer-to-peer feedback	session 24th of October Co-funded by 22

Geometry

24th of October 2023

Project's Contributions to Regulatory and Market Development

In Latvia, energy communities are a very new concept. From 01.01.2023 Amendments to the Energy Law define the concept of energy communities, and with the amendments to the Electricity Market Law, the concept of sharing electricity for collective self-consumption schemes and energy communities was introduced. Until now, housing associations could use PV for collective consumption in common premises, but the possibility of distributing electricity to individual apartments was not yet possible. This means that electricity cannot be shared between residents as individual customers. Government regulations that complement the general legal framework are very important for the further development of REC in Latvia. Their adoption is envisaged in 2023.

In the framework of project proposals and possible technical solutions for the distribution of PV energy in an apartment building were developed, which will be presented to the decision makers.

Control

	ST meter				
ADVANTAGES			DISADVANTAGES		
Aspect	Direct Connection	Indirect Connection	Aspect	Direct Connection	Indirect Connection
Electricity Cost Savings	Consumers do not pay for solar power if ST consent is obtained	Similar cost-saving potential if ST consent is obtained	ST Consent Requirement	ST may not grant consent for meter bypass	ST may not grant consent for meter disconnection
Optimized Energy Utilization	Solar power directly supplied to consumers, minimizing grid reliance	Grid synchronization for power balancing ensures optimal use	Inverter Regulation Constraints	Inverter's power regulation may not match consumption demand	Inverter's power may not provide enough for all consumers
Battery Integration Flexibility	Choice to integrate batteries for energy storage	Option to opt for a conventional inverter without batteries	Complex Control in Battery Depletion	Unclear control when the battery is depleted, and solar generation is insufficient	Unclear control when inverter power is insufficient for all consumers
Enhanced Grid Independence	Reduces reliance on the external grid, promoting self- sufficiency Requirement Requires individual cords and two meters for each		wo meters for each consumer		
Potential for Net Metering	Opportunities for excess energy to be fed back into the grid, potentially earning credits		Equipment Compatibility	Equipment must be carefully selected for compatibility	
Distributed Energy Generation	Solar energy production is distributed across the building, reducing transmission losses		Programmable Logic Controller (PLC)	PLC installation and programming required	
Reduced Carbon Footprint	to a center or cloud service required for consumption to decreased greenhouse gas emissions Data Management Data center or cloud service required for consumption management		equired for consumption data		
Improved Resilience and Reliability			Visualization Solutions	Requires skilled programme maintenance	ers for development and
Community Engagement and Sustainability	ngagement and Fosters a sense of community involvement in		Internet and Electrical Connections	Requires at least two interne specific electrical switchboard	t cables per apartment and
		Iterative Enhancements	Product development may rec enhancements	uire debugging and iterative	
ST-the operator of the power distribution services		Independent Services	Requires independent electricity and internet connections, incurring additional costs		

24th of October 2023

Opportunities for Exchange on Regulatory and Market Development

OPEN QUESTIONS AND CHALLENGES (YOUR QUESTIONS TO PEER EXPERTS)

- Business models that can be used in renewable energy communities?
- What can be the regulatory aspects of energy communities?

WE OFFER EXPERIENCE IN...

(AREAS OF EXPERTISE & EXPERIENCE TO SHARE)

- Energy Communities, microgrids, PEDs
- BAPV & BIPV design and assessment
- Energy management, including forecasting, optimization and dynamic electricity prices

24th of October 2023

Multi Energy Storage Hub For reliable and commercial systems Utilization

#energystorage #RES #flexibility #industry Bartlomiej Arendarski, Fraunhofer IFF Karol Lapinski, Electrum Solutions

Project Activities & Results in 2023

Activities/Results

Techno- logy	 Multi energy storage hub solutions (technology and service) SCADA/ Energy Management System Storage Virtual Power Plant 	FASTCH		
Market	 flexibility operation from end customers in the local grids via SMEs (small and medium enterprises)/ industry technology providers up to the ESO (energy system operator)/DSO (distribution system operator) 	Flexibility to System for the integration		
Adoption	 Net-Zero-Energy-Factory Sustainable 'green' products Grid services 	Getting planning energy storage hu		
EUROPEAN PARTNERSHIP CETPartnership Annual Conference – Peer-to-peer feedback session				

2023

36

the European Union
Project's Contributions to Regulatory and Market Development

- Installation and operation of battery energy storage (according to grid codes) as a flexibility option at different grid levels
- EMS/SCADA and ICT solution for storage hub monitoring and control
- Storage use cases and AI scheduling
- Offering system services on primary reserve power market and Spot market (51MW / 75MWh)
- FCR frequency containment reserve
- aFRR automatic frequency restoration reserve
- Four high innovative Mesh4U demonstrators \rightarrow

24th of October 2023

37

Opportunities for Exchange on Regulatory and Market Development

OPEN QUESTIONS AND CHALLENGES (YOUR QUESTIONS TO PEER EXPERTS)

- Searching for new technical and economic use cases for storage systems, e.g. flexibility offering
- Legal and regulatory aspects of energy storage operation, trading
- Multi functions for storage systems
- Finding optimal business model

WE OFFER EXPERIENCE IN...

(AREAS OF EXPERTISE & EXPERIENCE TO SHARE)

- Methodology and tool for optimal planning and sizing of energy storage
- EMS/SCADA for storage operation in combination with other assets: RES, loads, grid, market, incl. forecast, scheduling etc.
- ICT architecture
 - Web Portal, Web API, Engineering Station, Database SQL Server, Emacs Server
 - O Communication drivers Modbus TCP Client
 - Message Bus RabbitMQ, RESTful API, Energy Storage Domain

Coffee break

Please be back at 15:35 CEST

Maximising exploitation and impact

Tanja Suni CETPartnership Impact Network Management

EUROPEAN PARTNERSHIP

Collaborative Harvesting: Going beyond pure research ...

Outlook

CETP Impact Vision

Driving Impact Through Systemic Transformation and the Quadruple Helix

The Exploitation Pathway

Outlook

CETP Impact Vision

Driving Impact Through Systemic Transformation and the Quadruple Helix

The Exploitation Pathway

CETP impact vision

Background¹:

Today's energy system is still built on several **parallel**, **vertical energy value chains**, which rigidly link specific energy resources with specific end-use sectors.

This model of separate silos cannot deliver a climate neutral

economy. It is technically and economically inefficient and leads to substantial losses in the form of waste heat and low energy efficiency.

The EU needs a transition to an **integrated clean energy system** across multiple energy carriers, infrastructures, and consumption sectors.

Impact vision:

CETP enables the clean energy transition

- from enabling technologies to integrated energy systems
- from regional to national and global level

to make Europe a frontrunner in energy innovation and implementation.

Figure 3 From enabling technologies towards and integrated energy system

CETP impact vision

What do we want? Expected impact of CETP:

- High-quality new knowledge, skills and technologies for a well-defined transition into a new, integrated clean energy system.
- An evidence and fact base for policymaking in support of Europe's energy transition in domains of innovation, market entry and diffusion, as well as regulation, and procurement.
- Higher use (=exploitation) of research results, innovation, services and knowledge to support the transition in policy, industry, and society.
- Uptake of innovation in society via increasing technological readiness and increasing compatibility with societal needs and values (societal readiness) of the solutions.

How do we get there? CETP Impact pathways:

- Problem-based projects with co-creation and engagement with stakeholders from research, industry, society and policy (the Quadruple Helix of systemic transition)
- **Projects moving along the Exploitation Pathway:** from basic technology research to development, piloting and demonstration to business creation and societal adoption.
- **Capacity building in the CEPT community:** training exploitation- and impact-boosting methodologies & building networks to policy, industry and value chain partners, and regional and local communities.
- Strategic relations with other EU partnerships and initiatives and nationally: regular exchange on policy developments, opportunities for joint actions and events or promotion of results to enhance the impact of CETP.

Outlook

CETP Impact Vision

Driving Impact Through Systemic Transformation and the Quadruple Helix

The Exploitation Pathway

What kind of impact do CETP solutions strive for?

Environment and Health: Defossilization of the energy system with solutions that are compatible with multiple soil/land use needs, biodiversity goals, and zero pollution, thus improving planetary and public health and overall wellbeing. Circular solutions that allow reducing the reliance on pristine natural resources and critical materials.

Social Equity and Inclusivity: Solutions that are fair, inclusive, and affordable in different regions, ensuring the green transition reaches all segments of society and reflects the diverse values of nature, landscapes, and urban environments. Addressing social equity concerns fosters a more inclusive and diverse market ecosystem.

Regulatory and Policy Impact: Shaping regulatory and policy environments to accelerate the adoption of sustainable practices within the green transition. Identification of regulatory barriers in CETP projects can help promote incentives & innovative regulatory sandboxes to boost the clean energy market.

What do we need in order to get the desired impact? - Systemic transformation requires the Quadruple Helix approach

Systemic transition problems are typically related to complex and interacting societal, economic, and environmental challenges. Examples include

- Reaching climate neutrality
- Transitioning to a clean energy system
- Reimagining urban mobility

Addressing systemic transformation involves more than just innovation at the product level. It requires input from **multiple stakeholders,** including **government, academia, industry, and civil society.**

The **Quadruple Helix approach** emphasizes the involvement of all four of these sectors to drive systemic change.

What does the Clean Energy System Transition require from the Quadruple Helix?

- Solutions that have been validated and piloted in practice as part of value chains
- Integration and digital optimization among different parts of the system energy production, storage, distribution, users, multiple energy carriers
- Business models and Go-To-Market strategies that fit the new integrated system and create value on different levels
- Testbeds and regulatory sandboxes for testing the legislative changes required
- Cross-sectoral political guidance, ambitious and cohesive climate, environment, and energy targets
- Financial support and incentives coordinated to support the integrated clean energy system
- Citizens, regions, companies, industrial hubs, cities, and municipalities = stakeholders committed to adopting the new solutions
- User groups to inform about their needs and to validate solutions in real environments
- NGOs and citizens in different regions to engage about cultural and social values and goals
- Education and training for new skills necessary to run the new clean energy system
- Systemic aspects of the planetary triple crisis: interactions among biodiversity, climate, and pollution
- Societal and environmental impact of supply chains, material, energy, and water use
- Scenarios and transition pathways, risks, foresight

Outlook

CETP Impact Vision

Driving Impact Through Systemic Transformation and the Quadruple Helix

The Exploitation Pathway

THE CETP EXPLOITATION PATHWAY

Horizon Europe goal: continuous flow of innovations to market

Policy influence and regulatory engagement

Stakeholder engagement and societal readiness

Collaborate with policymakers, advocate for supportive policies and ensure compliance. Engage the industry, academia, policymakers, and the public to ensure useful, inclusive solutions that have the desired environmental sustainability impacts and sufficient public support and acceptance for swift adoption.

THE CETP EXPLOITATION PATHWAY

Horizon Europe goal: continuous flow of innovations to market

Policy influence and regulatory engagement

Stakeholder engagement and societal readiness

Collaborate with policymakers, advocate for supportive policies and ensure compliance. Engage the industry, academia, policymakers, and the public to ensure useful, inclusive solutions that have the desired environmental sustainability impacts and sufficient public support and acceptance for swift adoption.

What could an exploitation pathway look like?

Collab/2023/e Harvesting: Knowledge Community & Impact Network

Step 1. Conceptualization (TRL 1)

Researchers conceptualize an innovative H2/CCU technology that combines renewable energy sources and advanced catalysts to efficiently convert carbon dioxide emissions into synthetic fuels and chemicals. Stakeholder engagement ensures that the innovation aligns with environmental goals and future policy expectations.

Step 2: Lab research (TRL 2-4)

In the laboratory, the research team conducts experiments to test the feasibility of the technology. They study the catalysts, analyze energy conversion efficiencies, and refine the design. Stakeholders provide early input on potential environmental concerns and policy needs related to the technology under development. Market shaping with other similar initiatives (CETP) can begin.

Step 3: Prototype and validation (TRL 4-5)

Building on promising lab results, the team develops a prototype reactor that can convert CO_2 emissions to carbohydrates. Initial tests show that the technology works effectively under controlled conditions. Tests with other modules begin. Dialogue with local community, value chain industry, policy and sustainability researchers including visits to the testing facilities for discussion and feedback.

Step 4: Validation in Real-World Environment (TRL 6-7)

The innovation advances to pilot project stage. It is tested at an industrial facility, where it captures CO_2 emissions from flue gases and converts them into synthetic fuels. Piloting provides real-world validation with users and industry partners and showcases the technology's practicality, usability, and compliance with environmental and societal goals.

Step 7: Market Integration and Scale-Up (TRL 9)

With successful pilot projects, broad societal acceptance, supportive regulations, and a well-developed business plan and go-to-market strategy in place, the H2/CCU technology attracts investments and partnerships for large-scale implementation, reducing carbon emissions and participating in a new, integrated clean energy system.

Step 6: Go-to-Market Strategy (TRL 8)

The GMS outlines the steps to introduce the H2/CCU innovation to its target market. The team identifies early adopters and end-users within the selected industries. The team plans to collaborate with a steel manufacturing company that seeks to reduce its carbon footprint. The strategy engages suppliers, customers, distributors, marketing partners, media, and the local community to build the business and get feedback.

Step 5: Business Plan (TRL 8)

The team focuses on sectors that produce substantial CO_2 emissions and where hydrogen can be utilized as an alternative energy carrier (e.g. steel manufacturing). The BP assesses the market size, competitive landscape, and revenue potential and engages the critical stakeholders in supply, demand, infrastructure, local community, policy, environment, and investment to leverage their support and address their interests and concerns.

CETP support for impact: Stakeholder networks, impact-boosting methods library, capacity building through training and networking events

Impact and exploitation Interactive session

CETP Annual Conference Collaborative harvesting 24 Oct 2023

EUROPEAN PARTNERSHIP

Programme

Welcome and aims of the session

Introductory panel discussion on impact and exploitation with TRI experts

Survey with online audience

Fishbowl demonstration of an impact-boosting tool

Wrap-up and final words

Programme

Welcome and aims of the session

Introductory panel discussion on impact and exploitation with TRI experts

Survey with online audience

Fishbowl demonstration of an impact-boosting tool

Wrap-up and final words

Panel discussion with TRIs on impact and exploitation

Giuseppe Palazzo TRI1 Integrated Net-Zero Emissions Energy System

Isabel Cabrita TRI3 Storage Technologies, Renewable Fuels, CCU/CCS

Kristina Starborg

Integrated Regional Energy Systems

Colladia Call ve Harvesting: Knowledge Community & Impact Network

What kind of impact do CETP solutions strive for?

Environment and Health: Defossilization of the energy system with solutions that are compatible with multiple soil/land use needs, biodiversity goals, and zero pollution, thus improving planetary and public health and overall well-being. Circular solutions that allow reducing the reliance on pristine natural resources and critical materials.

Social Equity and Inclusivity: Solutio different regions, ensuring the green and reflects the diverse values of nat Addressing social equity concerns for ecosystem.

Regulatory and Policy Impact: Shapi accelerate the adoption of sustainab Identification of regulatory barriers i incentives & innovative regulatory sa

Step 1. Conceptualization (TRL 1)

Researchers conceptualize an innovative H2/CCU technology that combines renewable energy sources and advanced catalysts to efficiently convert carbon dioxide (CO2) emissions into synthetic fuels and chemicals. Stakeholder engagement ensures that the innovation aligns with environmental goals and future policy expectations.

Step 2: Lab research (TRL 2-4)

In the laboratory, the research team conducts experiments to test the feasibility of the technology. They study the catalysts, analyze energy conversion efficiencies, and refine the design. Stakeholders provide early input on potential environmental concerns and policy needs related to the technology under development. Market shaping with other similar initiatives (CETP) can begin.

Step 3: Prototype and validation (TRL 4-5)

Building on promising laboratory results, the team develops a prototype reactor that can efficiently produce hydrogen and convert CO2 emissions. Initial validation tests show that the technology can work effectively under controlled conditions. Dialogue with local community, value chain industry, policy and sustainability researchers including visits to the testing facilities for discussion and feedback.

Step 4: Validation in Real-World Environment (TRL 6-7)

The innovation advances to the pilot project stage. It is tested at a power plant or industrial facility, where it captures CO2 emissions from flue gases and converts them into synthetic fuels. Piloting provides realworld validation with users and industry stakeholders and showcases the technology's practicality, usability, and compliance with environmental and societal goals.

RECAP on impact and exploitation

Step 7: Market Integration and Scale-Up (TRL 9)

With successful pilot projects, broad societal acceptance, supportive regulations, and a well-developed business plan and go-tomarket strategy in place, the H2/CCU technology attracts investments and partnerships for large-scale implementation, reducing carbon emissions and participating in a new, integrated clean energy system.

Step 6: Go-to-Market Strategy (TRL 8)

The GMS outlines the steps to introduce the H2/CCU innovation to its target market. The team identifies early adopters and end-users within the selected industries. The team plans to collaborate with a steel manufacturing company that seeks to reduce its carbon footprint. The strategy emphasizes how the innovation addresses environmental concerns and supports the transition to a sustainable energy ecosystem, aligning with policy objectives.

Step 5: Business Plan (TRL 8)

The team focuses on sectors that produce substantial CO2 emissions and where hydrogen can be utilized as an alternative energy carrier (<u>e.g.</u> steel manufacturing). The BP assesses the market size, competitive landscape, and revenue potential. The team collaborates with policy stakeholders to shape regulations and incentives that promote the adoption of COU technologies.

Programme

Welcome and aims of the session

Introductory panel discussion on impact and exploitation with TRI experts

Survey with online audience

Fishbowl demonstration of an impact-boosting tool

Wrap-up and final words

Collaborative harvesting: input from you for the Support Services

Support Services

Networking events for climbing the TRL through validation: **CETP Pitching & Matchmaking Ev** for validation cooperation, new project initiatives and applicants

THEMATIC EVENTS ONLINE

(09:00-13:00

Multi-Method

Approaches

Use

Engage

135 participants signed up for this session

You will be able to join 10 minutes before the session starts

DESCRIPTION:

Welcome to an information and matchmaking event for the upon

ock the potentia al validation pa ou're focused o gy technologies lidation labs, te e next level.

Programme

Welcome and aims of the session

Introductory panel discussion on impact and exploitation with TRI experts

Survey with online audience – what kind of support do you need for exploitation and impact in your research/projects or as users?

Fishbowl demonstration of an impact-boosting tool

Wrap-up and final words

Very confident

22

5 22

Very confident

What are the most difficult issues/obstacles for you in exploitation and impact? 33 responses

RECAP: What does the Clean Energy System Transition require from the Quadruple Helix?

- Solutions that have been validated and piloted in practice as part of value chains
- Integration and digital optimization among different parts of the system energy production, storage, distribution, users, multiple energy carriers
- Business models and Go-To-Market strategies that fit the new integrated system and create value on different levels
- Testbeds and regulatory sandboxes for testing the legislative changes required
- Cross-sectoral political guidance, ambitious and cohesive climate, environment, and energy targets
- · Financial support and incentives coordinated to support the integrated clean energy system
- Citizens, regions, companies, industrial hubs, cities, and municipalities = stakeholders committed to adopting the new solutions
- User groups to inform about their needs and to validate solutions in real environments
- · NGOs and citizens in different regions to engage about cultural and social values and goals
- Education and training for new skills necessary to run the new clean energy system
- Systemic aspects of the planetary triple crisis: interactions among biodiversity, climate, and pollution
- Societal and environmental impact of supply chains, material, energy, and water use
- Scenarios and transition pathways, risks, foresight

Fishbowl demonstration of the Quadruple Helix tool for three TRIs

miro	CETP QH s	stakeholder analysis	Ξ <u>↑</u> α _{e.p}	ong 🛓 >	• • I I	i 🔹 📭 🎽	🖽 ए 🗘 Pres
▶ □		continue/clafiry the	STAKEHOLDER ing potential reasor b lists to suit your ec rch, and community	ns for stakeholder e osystem's needs. Tl			
T P		Quadruple helix group	Information	Tailoring solutions	Systemic transition	Risk management	Risk of not engaging stakeholders
ക ≁		Government	•	Municipality/ city planning – infrastructure, policies, incentives		Regulatory compliance Supply of trained workforce in the future	Use of regulatory knowledge (e.g. energy legislation)
A I	•	Research	Wider perspectives (environmental and social sustainability) of system transition		Circular & digital solutions	analysis of external effects	Unintended consequences of solutions or in supply chains: biodiversity, pollution or social sustainability
# ₽		Community	consumer's pain points	User needs Societal acceptance		Testing: solutions that will be adopted in local context	Mas energing mariket opportunities
2		Industry	B2B need data	Publicprivate partnership usng innovative procurements	Adoption of solutions Circularity - partners, data, research, digital solutions	Small pilot projects to test the new markets	No partners for systemic transition
E							— 9%

.....

Cet

Programme

Welcome and aims of the session

Introductory panel discussion on impact and exploitation with TRI experts

Survey with online audience – what kind of support do you need for exploitation and impact in your research/projects or as users?

Fishbowl demonstration of an impact-boosting tool

Wrap-up and final words

Thank you!

tanja.suni@clicinnovation.fi

EUROPEAN PARTNERSHIP

What to expect tomorrow?

Morning

10:00 RDI Projects in the center and CETPartnership challenges

Afternoon

14:00 Joint Call 2023 Q&A session

15:30 Opportunities for matchmaking for the Joint Call 2023

10/26/2023

Closing

EUROPEAN PARTNERSHIP

74